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Preface

Describing only developments on integration
engine

Work funded by EU through Biostruct-X work
package 6, Diamond Light Source and CCP4

Builds on massive amount of existing
literature

Working with LMB, Gleb Bourenkov



Overview

“Top level” view

Design principles

— Global models, global refinement
— Use of interfaces

— Run-time extensibility

— Flexibility of use

Benefits of design
Plans



Top-level view (one of our goals)
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Global model, global refinement

 Mosflm, XDS have “local” model, continuous
refinement

— Model to integrate frame i different to model for
frame |

— Harder to reliably parallelize to get identical
results to serial code

* Have global (time dependent) model for all
parameters => can run analysis in parallel



XDS processing 7200 degree set

Refined cell lengths / postrefined values
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Design principles (interfaces)
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Design principles (interfaces)

O links to raw data
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Interface designs

* |Interfaces designed now will be wrong,
though experience from xia2 will help

* Learning by doing, then design interfaces,
then modify implementations to fit

* Take a light-weight approach to modeling — no
UML, just describe in source code




Design principles (extensibility)

Dependencies (crystallographic libraries, openCL, etc.)
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Design principles (extensibility)

* This can actually work: use smart inheritance,
registry, factory

 Example from dxtbx:
— Define metaclass for interface

— Write python code inheriting from interface
— Registry searches for and sources python files

— Metaclass auto-registers code, factory to recover

* Dependency on clean interfaces



Design principles (flexibility)

Integration process
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Benefits of design

Allow run-time customization e.g. change
workflow

Allow run-time extension with e.g. new
algorithms

Value of new algorithms can be demonstrated
easily

Development of new methods has clear
starting point



Plans

* Re-implement existing methods (see James
Parkhurst talk)

* Produce working version of software this year
including global refinement (see David
Waterman talk)

e Extend this to hybrid method in first
Illustration




Hybrid method
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Input from outside

* Dectris involved for proper modelling of the
detector

 Anyone else can be involved to develop “plug
in” detector models



Framework Components



Fundamental data structure

ReflectionList & ObservationList

* Central data storage class: reflections indexed
by miller indices, point at a list of observations
which can have templated form

e Store: |, sigl, reflection profiles, partial
observations, ...

e Parallel operation: fork, merge: different
threads operate on different instances of list



ReflectionList

* |teration 1: map of Miller indices to:
— Prediction
— Shoebox
— Ewald-sphere profile
— 1, sigl
* |teration 2: database:
— Peaks, profiles, predictions etc.

— Many to many map w.r.t. Miller indices -
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